<b>spsur</b>: An <i>R</i> Package for Dealing with Spatial Seemingly Unrelated Regression Models

نویسندگان

چکیده

Spatial seemingly unrelated regression (spatial SUR) models are a useful multiequational econometric specification to simultaneously incorporate spatial effects and correlated error terms across equations. The purpose of the spsur R package is supply complete set functions test for structures in residual SUR model; estimate most popular specifications by applying different methods linear restrictions on parameters. also facilitates estimation socalled impacts, conveniently adapted framework. includes simulate datasets with features decided user, which may be teaching activities or more general research projects. article concludes real data application showing potential that has examine relation individual mobility over geographic areas incidence COVID-19 Spain during first lockdown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Geoadditive Seemingly Unrelated Regression

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation

We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model — with a conditional quantile restriction for each equation — in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotical...

متن کامل

Bayesian Geoadditive Seemingly Unrelated Regression 1

Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...

متن کامل

Highly accurate likelihood analysis for the seemingly unrelated regression problem

The linear and nonlinear seemingly unrelated regression problem with general error distribution is analyzed using recent likelihood theory that arguably provides the definitive distribution for assessing a scalar parameter; this involves implicit but well defined conditioning and marginalization for determining intrinsic measures of departure. Highly accurate p-values are obtained for the key d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Software

سال: 2022

ISSN: ['1548-7660']

DOI: https://doi.org/10.18637/jss.v104.i11